Prediction of Multi-Physical Analysis Using Machine Learning
نویسندگان
چکیده
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملUsing Machine Learning Techniques for Performance Prediction on Multi-Cores
Sharing of resources by the cores of multi-core processors brings performance issues for the system. Majority of the shared resources belong to memory hierarchy sub-system of the processors such as last level caches, prefetchers and memory buses. Programs co-running on the cores of a multi-core processor may interfere with each other due to usage of such shared resources. Such interference caus...
متن کاملMulti-class protein Structure Prediction Using Machine Learning Techniques
Protein structure prediction is the major problem in the field of bioinformatics or Computation biology. Recently many researchers used various data mining and machine learning tool for protein structure prediction. My intention is to use model based (i.e., supervised learning) approach for protein secondary structure prediction and our objective is to enhance the prediction of 1D and 2D protei...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of IKEEE
سال: 2016
ISSN: 1226-7244
DOI: 10.7471/ikeee.2016.20.1.094